On safety and abstraction

Haskell does not have full-fledged dependent types. For example, there is no way to create naturals as a subset of integers. One way to sidestep this restriction is creating an abstract datatype. Define

newtype Natural = N Integer

and add a collection of methods (addition, printing etc.). Clients can interact with this type only via these methods. They cannot construct a pathological value such as N (-1), which could violate some invariants and crash the program.

Furthermore, we can change the implementation later on (for example, to data Natural = Zero | Succ Natural) and the clients will not notice, as long as we do not change the protocol.

It seems that abstract datatypes give us two things at once: safety from invalid values and modularity. I think this is a bad conflation. These two concerns should be separated.

Subsets

Without support of dependent types we can at least label where they should be. Define

newtype Subset a = Subset a

fromSubset :: Subset a -> a
fromSubset (Subset a) = a

unsafeToSubset :: a -> Subset a
unsafeToSubset = Subset

and change the definition of naturals to

newtype Natural = N (Subset Integer)

Here Subset a is an unspecified, context-dependent, subset of type a.

This way safety and modularity is separated. If you match on N it means that you break the module abstraction: your code depends on the implementation details. If, furthermore, you use Subset, you have to guarantee you’re not constructing pathological values.

The same thing happens in restricted IO from GHC’s manual, which can be defined with:

newtype RIO a = RIO (Subset (IO a))

Quotients

In naturals, unconstrained use of constructor N might lead to nonsensical objects. Sometimes there’s a dual situation: unconstrained use of pattern matching might lead to invalid results.
For example, rationals are pairs of integers p/q, but we want 1/2 and 2/4 to be indistinguishable – the “numerator” operation breaks abstraction. In this post I talked about this phenomenon with functions represented by algorithms.

newtype Quotient a = Quotient a

toQuotient :: a -> Quotient a
toQuotient = Quotient

unsafeFromQuotient :: Quotient a -> a
unsafeFromQuotient (Quotient a) = a

Note that the direction of functions is reversed. Going from an object to quotient is well-defined, but when you go the other way you have to guarantee consistent behavior for equivalent answers.

Free groups (see sigfpe’s post) can be defined with
newtype FreeGroup x = FreeGroup (Quotient [Either x x])
which means that an element of a free group is represented by a list, but with some identifications: [Right a, Left a] is equivalent to [] since aa-1=1.

What about rationals? An explicit version of
data Rational = Rational Integer Integer
is
data Rational = Rational (Quotient (Integer, Subset Integer))

Here there are both mechanisms: equivalent pairs must be equal, and the denominator must be nonzero. Both constructing and deconstructing rationals is unsafe in full generality; the type tells you exactly in what manner.

Final thoughts

In my opinion marking quotients and subsets should become a custom, even in absence of dependent types. It makes things explicit where they should be.

If you think those newtypes are littering too much, you can at least make them transparent with

type Subset a = a
type Quotient a = a

and let your type definitions speak more.

Finally, while both Subset a and Quotient a are ambiguous (they do not specify the subset or the partition), you can make an indication with a phantom tag:

data NonNegative
newtype Subset' p a = Subset' a
type Natural = Subset' NonNegative Integer

but handling tags gets troublesome rather fast (there is no automatic way to reason on them). Continua a leggere

Pubblicato in Senza categoria

A kind for regions

With a new powerful kind system in GHC, there are many lurking opportunities for expressive programming. Here’s one.

What is the kind of the ST type constructor? Currently, it’s ST :: * -> * -> *.

It should not be. In ST s a, the parameter s is special. It is not meant to be a “real” type like Int. It is used only to control the scope of references. One day I’d like to see a separate kind for s.

kind Region
ST :: Region -> * -> *
STRef :: Region -> * -> *
runST :: (forall (s :: Region). ST s a) -> a

This way it’s clear that in ST s a the types s and a are of different nature. Attempting to write ST s s is a kind error. Continua a leggere

Pubblicato in Senza categoria

A toy version of Safe Haskell

The idea of Safe Haskell is to control unsafe operations. Here is an alternative idea of implementation. Define a class

> {-# LANGUAGE FlexibleContexts, Rank2Types #-}
> class Unsafe a where

The “a” parameter is unneccessary, but it is required by GHC.

Add the unsafe constraint to each operation.

> unsafePerformIO :: Unsafe () => IO a -> a
> unsafePerformIO = undefined -- implementation skipped

> unsafeCoerce :: Unsafe () => a -> b
> unsafeCoerce = undefined

That’s it. You can now code with unsafe functions. The constraint “Unsafe” is contagious: everything that internally uses unsafe* will be tagged. Old code does not have to be changed except type signatures.

The compiler only has to prohibit users from defining instance Unsafe (). If you do this, you are releasing the brakes, and back to normal Unsafe Haskell.

Safe Haskell has “trustworthy” modules, which can use unsafe features, but their authors claim their interfaces are safe.

This idea can be implemented if there was a special function allowed in trustworthy modules removing the constraint:

> unsafe :: forall a. (Unsafe () => a) -> a
> unsafe = undefined

Of course this falls short of real Safe Haskell, which must forbid Template Haskell, overlapping instances etc. I like the fact that unsafeness of unsafePerformIO is expressed in its type.


I hope this demonstrates zero-parameter type classes might be something reasonable. For now, you can simulate them with -XConstraintKinds and -XDataKinds:

{-# LANGUAGE ConstraintKinds, KindSignatures, DataKinds #-}
class Unsafe' (a :: ())
type Unsafe = Unsafe' '()

Edit:

I just realized you can have unsafe instances:

instance (Unsafe (), Show a) => Show (IORef a) where                          
show = show . unsafePerformIO . readIORef

Continua a leggere

Pubblicato in Senza categoria

Descending the level ladder

The following is a way to compute 2+1 using the GHC type system. The “:kind!” command tells GHCi to display normalized version of a type.

{-# LANGUAGE TypeFamilies #-}
data Zero
data Succ a

type family Add x y
type instance Add Zero x = x
type instance Add (Succ x) y = Succ (Add x y)

*Main> :kind! Add (Succ (Succ Zero)) (Succ Zero)
Add (Succ (Succ Zero)) (Succ Zero) :: *
= Succ (Succ (Succ Zero))

Notice we did not use Haskell values anywhere. Not even undefined. This way of computing 2+1 uses types only.

Imagine you are a malicious professor teaching Haskell to freshmen. You tell them that this is the normal way to compute 2+1 in Haskell. The students later code Fibonacci, multiplication etc. They get a Turing complete language.

They have no idea that Haskell has what we call values. To them, “values” are things like Succ Zero, what we call “types”. They think Haskell has a type system, that prohibits nonsense such as Zero (Succ Succ). In reality, that type system is kinds.

Later, the students discover the truth; their values are really types, and their types are really kinds.

In this post I will argue we might live in such shifted world as well. There is a layer below Haskell values.

What is it? By Curry-Howard, we can think of values as proofs for types. For example, the identity function is a proof that p -> p. Analogously, we can think of “undervalues” as proofs for values. So I will call this level “proofs”. We have

kinds > types > values > proofs

where A>B means that A is a type system for B.

One way to see “undervalues” is to check what are values in above scenario. If we add to the initial code the datatype

data Equal a b where
Eq :: Equal a a

then a value of type

com :: forall (m :: *) (n :: *). Equal (Add m n) (Add n m)

could work as a proof that addition is commutative.

So, in the shifted scenario, we have a kind * (a poor man’s Naturals), types Zero and Succ, and a value of type Equal (Add m n) (Add n m).

Shifting down, we have a type Natural, values Zero and Succ, and a proof of value m + n == n + m, which cannot be seen in normal Haskell.

data Natural = Zero | Succ Natural 

add :: Natural -> Natural -> Natural
add Zero x = x
add (Succ x) y = Succ (add x y)

*Main> add (Succ (Succ Zero)) (Succ Zero)
Succ (Succ (Succ Zero))

-- com :: forall (m :: Natural) (n :: Natural). add m n == add n m
-- cannot be written

Intuition
When you write a type T in Haskell, you can check its correctness from above:

Is there a K such that type(T)=K?
(i.e. Is there a valid kind for T?)

but you can also check it from below:

Is there a V such that type(V)=T?
(i.e. Is there a valid value for T? Is T inhabited?)

Analogously, when you write a value V in Haskell, you can check its correctness from above:

Is there a T such that type(V)=T?
(i.e. Is there a valid type for V?)

but you can also check it from below:

Is there a P such that type(P)=V?
(i.e. Is there a valid proof for V? Is V inhabited?)

Checking from above corresponds to checking syntax, and checking from below to checking semantics.

The type Equal Int Bool is not invalid. You can use it in type-level computation. But it is uninhabited, and this is a sign it might not make sense. The same thing happens when you write an instance of Monoid which is not a monoid. You used an uninhabited value. Since syntax is OK, you can run your code. But you will run into trouble, since semantics is wrong. There is no proof of your monoid instance, just like there is no value of the type Equal Int Bool.

Encoding equational reasoning

A lot of functional literature contains proofs. Here is an example of what I mean – product of two associative operations is associative. Suppose (a,b)+(c,d)=(a+b,c+d). (The + symbol is overloaded and means 3 different things, beware.)

(x + y) + z =
[use x = (fst x, snd x)]
((fst x, snd x) + (fst y, snd y)) + (fst z, snd z) =
[Definition of product operation]
((fst x + fst y, snd x + snd y) + (fst z, snd z) =
[Definition of product operation]
((fst x + fst y) + fst z, (snd x + snd y) + snd z) =
[Associativity of + and +]
(fst x + (fst y + fst z), snd x + (snd y + snd z)) =
[Definition of product operation]
(fst x, snd x) + (fst y + fst z, snd y + snd z) =
[Definition of product operation]
(fst x, snd x) + ((fst y, snd y) + (fst z, snd z)) =
[use (fst x, snd x) = x]
x + (y + z)

This should remind you of function composition:

    f     g     h
A --> B --> C --> D

but on a lower level: types A,B,C,D become values, and values f,g,h become proofs.

It has always bugged me that such proofs are not easily executable in Haskell despite their routine feel.

This is because we cannot access the proof level. We can attempt to do so, by shifting everything up. I will adapt the proof and show that the product of two monoids is a monoid.

We start by encoding values as types. For simplicity, we will not transfer their types to complicated kinds.

The (:=) datatype encodes reasoning rules for equality.

{-# LANGUAGE GADTs, KindSignatures, RankNTypes, TypeOperators, TypeFamilies,
ScopedTypeVariables #-}
data Fst x
data Snd x
data ProdOp (f :: * -> * -> *) (g :: * -> * -> *) x y

data a := b where
Refl :: a := a
Sym :: a := b -> b := a
Comp :: a := b -> b := c -> a := c
Arg :: a := b -> c := d -> f a c := f b d
PairC :: a := (Fst a, Snd a)
DefProd :: ProdOp f g (a, b) (c, d) := (f a c, g b d)

Now, we can write proofs of associativity and left/right identity. The functions neutrLProd and neutrRProd take proofs that f,g have neutral elements m,n and show that their product has neutral element (m,n). The function assocProd does the same with associativity.

type NeutralL (+) e = forall x. e + x := x
neutrLProd :: NeutralL m e -> NeutralL n f -> NeutralL (ProdOp m n) (e,f)
neutrLProd e1 e2 =
-- (e,f) + x
Arg Refl PairC
`Comp` -- (e,f) + (fst x, snd x)
DefProd
`Comp` -- (e + fst x, f + snd x)
Arg e1 e2
`Comp` -- (fst x, snd x)
Sym PairC
-- x

type NeutralR (+) e = forall x. x + e := x
neutrRProd :: NeutralR m e -> NeutralR n f -> NeutralR (ProdOp m n) (e,f)
neutrRProd e1 e2 =
-- x + (e, f)
Arg PairC Refl
`Comp` -- (fst x, snd x) + (e, f)
DefProd
`Comp` -- (fst x + e, snd x + f)
Arg e1 e2
`Comp` -- (fst x, snd x)
Sym PairC
-- x

type Assoc (+) = forall x y z. ((x + y) + z) := (x + (y + z))
assocProd :: Assoc f -> Assoc g -> Assoc (ProdOp f g)
assocProd a1 a2 =
-- (x + y) + z
Arg (Arg PairC PairC) PairC
`Comp` -- ((fst x, snd x) + (fst y, snd y)) + (fst z, snd z)
Arg DefProd Refl
`Comp` -- (fst x + fst y, snd x + snd y) + (fst z, snd z)
DefProd
`Comp` -- ((fst x + fst y) + fst z, (snd x + snd y) + snd z)
Arg a1 a2
`Comp` -- (fst x + (fst y + fst z), snd x + (snd y + snd z))
Sym DefProd
`Comp` -- (fst x, snd x) + (fst y + fst z, snd y + snd z)
Arg Refl (Sym DefProd)
`Comp` -- (fst x, snd x) + ((fst y, snd y) + (fst z, snd z))
Sym (Arg PairC (Arg PairC PairC))
-- x + (y + z)

(Exercise for the reader: Write the proof that product of two commutative operations is commutative.)

This is the normal monoid type class in Haskell, with unenforceable laws:

class Monoid m where
() :: m -> m -> m
mempty :: m
-- law (a b) c == a (b c)
-- law mempty a == a
-- law a mempty == a

Now we shift everything: types become kinds, values become types, and proofs become values. Since we do not have kind classes yet, we will simulate them with an additional parameter. (We are doing this trick, only on kind level.)

data Proxy i = Proxy

class Monoid' i where
type Mappend i :: * -> * -> *
type Mempty i :: *
assoc :: Proxy i -> Assoc (Mappend i)
neutrL :: Proxy i -> NeutralL (Mappend i) (Mempty i)
neutrR :: Proxy i -> NeutralR (Mappend i) (Mempty i)

instance (Monoid' m, Monoid' n) => Monoid' (m,n) where
type Mappend (m,n) = ProdOp (Mappend m) (Mappend n)
type Mempty (m,n) = (Mempty m, Mempty n)

assoc (Proxy :: Proxy (m,n)) = assocProd (assoc (Proxy :: Proxy m))
(assoc (Proxy :: Proxy n))
neutrL (Proxy :: Proxy (m,n)) = neutrLProd (neutrL (Proxy :: Proxy m))
(neutrL (Proxy :: Proxy n))
neutrR (Proxy :: Proxy (m,n)) = neutrRProd (neutrR (Proxy :: Proxy m))
(neutrR (Proxy :: Proxy n))

That Proxy is needed to avoid ambiguity errors in type families. If I could, I would write assoc :: Assoc (Mappend i), assoc = assocProd assoc assoc.

We can write a monoid and prove it satisfies the monoid laws. If the language had a support for proofs, we could do that on value level as well.

In category theory, equations sometimes change to morphisms:

  • A monoid is a type m with a product of type (+) :: m -> m -> m and a proof of value (a + b) + c = a + (b + c),
    A monoidal category is a kind k with a product of kind (+) :: k -> k -> k and a value of type a + (b + c) -> (a + b) + c [and other things],
  • A monoid homomorphism between monoids m,n is a value of type m -> n with proofs of values f(m)*f(n)=f(m*n) and e=f(e);
    An applicative functor between monoidal categories m, n is a type f :: m -> n with values of type f m * f n -> f (m * n) and () -> f ().

Interestingly, some languages support “universe polymorphism”, which allows to unify such declarations.

Final thoughts
Equational reasoning is a very powerful tool for program transformations. GHC uses them to make strong optimizations. It is also the base of hlint. It can express many folklore ideas – free theorems/parametricity, stream fusion, fold properties etc. I hope some day those things will become an integral part of the language or standard library. When you are adding a rewrite rule to GHC or a suggestion to hlint, you could write a proof that the rewriting is a consequence of laws. When you are writing an instance of a type class, you can prove required laws.

A well-known Haskell saying is that if you think a lot about types, then the values will write themselves. In the same way, if you think a lot about values, their proofs should – in theory – be easy. Perhaps a tool like Djinn could find the proof automatically in limited cases.

Haskellers often write types, and leave values as undefined. In the same way, you could write values, and worry about supplying proofs later. So at least in theory, adding proofs should not be a revolution. Currently, whatever you write in Haskell, your code will be full of intangible assumptions and invisible undefined proofs!

So there is an invisible world – the world of proofs – hidden below values. Is there an even lower level below proofs? If you take proofs to be objects, then arrows between them could mean their transformations.

This is the path taken by dependently typed languages such as Agda. However, as far as I know dependent types are not a requirement for proofs: we have only added an additional layer, we do not allow types to depend on values. Continua a leggere

Pubblicato in Senza categoria

Kind polymorphism – a draft

I extended the post on kind polymorphism to Omega, and I’m rather satisfied – I captured 10 different senses of monoids, used level polymorphism and type functions on the way.

sumMonoid      :: Monoid Hask Int                 -- monoid
maybeMonad :: Monoid EndHask Maybe -- monad
envComonad :: Monoid CoEndHask (Env s) -- comonad
haskCat :: Monoid Graph (->) -- category
ixState :: Monoid Indexed IxState -- indexed monad
ixStore :: Monoid CoIndexed IxStore -- indexed comonad
intRing :: Monoid Ab Int -- ring
sumCMonoid :: Monoid Monoids Int -- commutative monoid
complexAlgebra :: Monoid (VSpaces Float) Complex -- R-algebra
EndHask'' :: Monoid' Cats (*0 ~> *0) -- monoidal category

A draft is available here and Omega source code is available here. There are still things that can be improved and researched on.

Also, see a new paper on kind system: Giving Haskell a Promotion. Continua a leggere

Pubblicato in Senza categoria

Algorithms and functions

Consider the following two functions:

f :: () -> ()
f = const ()

g :: () -> ()
g = id

Is there a way to write a function that tells them apart? Given an infinite loop, first will stop and the second will hang. But you can do better, give an exception and check if it was thrown:

data TestException = TestException deriving (Show, Typeable)

instance Exception TestException

test :: (() -> ()) -> Bool
test k = unsafePerformIO $ catch (k (throw TestException) `seq` return True)
(\TestException -> return False)

Is this a safe trick?

On the one hand, it looks rather innocently: a function is given some box, and if it opens it, it’s caught red-handed. Such function would hang given infinite loop. A function that doesn’t touch the box, yet finishes, is const (). Such ‘test’ is a nice feature to have.

On the other hand, something is wrong, since f is more defined than g, and test f is not at least as defined as test g. This contradicts monotonicity. By giving two exceptions to (+), you can check which argument is evaluated first:

throw A + throw B

That means flip (+) is not the same as (+). Addition is not commutative!

Which of these points is correct?

The representation of a->b
Internally, the (->) type is a list of instructions – force a thunk, case, perform a primitive instruction like adding integers. In other words, it’s an algorithm. You could conceivably write an algebraic datatype that encompassed all those options.

data Instruction a b = Force Thunk | Return Value...
type Algorithm a b = [Instruction a b]

Haskell has an evaluator that takes an algorithm and runs it step by step.

($) :: Algorithm a b -> a -> b

Having access to internal source code of an algorithm, you can write a “debugger” that stops if the function forces its argument. In a sense, this is what the function test is doing.

Lazy IO uses this trick. When a thunk is forced evaluation is stopped momentarily, and IO is performed.

Still, the denotational semantics argument seems disturbing.

The distinction

The solution to the dilemma is:

There are two different ways of interpreting values of type a -> b.

  • functions that assign a value of b to each value of a.
  • algorithms that are recipes how to turn a into b.

In Haskell, the function view is used, but in this post I’ll use both to illustrate differences. I’ll call the algorithm view “operational” and function view “denotational”.

Representing algorithms is possible using ADT, as you seen above. Functions are represented using algorithms:

data Function a b = Function (Algorithm a b)

You can turn an algorithm into a function:

evaluate :: Algorithm a b -> Function a b
evaluate = Function

but the reverse conversion is ill-defined – one function has many representations. evaluate turns an algorithm into a “black box”.

Think about rational numbers. You represent them as pairs of integers, even though a rational number is not a pair. Then, you write operations like addition, which don’t break ‘internal consistency’. Not every operation on pairs can be lifted to operation on rationals. Different pairs may represent same rationals. It’s the same with functions stored as algorithms.

Questions:
The questions focus on differences between algorithms and functions.

1. Can you compare values of type a -> b for equality?
Answer

You can compare algorithms, since they are lists of instructions. You cannot in general compare functions because of the halting problem.

For example, the following two are different algorithms:

mergesort :: Ord a => [a] -> [a]
insertionsort :: Ord a => [a] -> [a]

But they are the same functions: evaluate mergesort is the same as evaluate insertionsort. In denotational view asymptotic complexity is discounted.

In operational view, \x -> 4 and \x -> 2+2 are two different values. Equational reasoning is not allowed, since there’s “quoting” after lambda.


2. How would you show an algorithm? A function?
Answer
You can show an algorithm showing its source code. You can show a function by allowing the user to interactively change the argument, and displaying the result in response.

3. How would you read an algorithm? A function?
Answer
To read an algorithm, read its source code. To read a function, the user must act as an oracle, giving the result of the function when asked.

4. What abstract models of computation correspond to algorithms and functions?
Answer
Turing machines and lambda calculus, respectively.

5. How does semantic order on values a -> b look like?
Answer
Denotationally, f>=g means that for all x, f(x)>=g(x).

Operationally, algorithms are only “source codes” and are ordered discretely, as integers:

That’s why the test function from beginning is correct from the operational view. It’s not true that algorithm f is more defined than algorithm g.


6. Is the following function

f :: (() -> ()) -> Bool
"f g = [return True if evaluation of g () halts within 100 evaluation steps]"

well-defined?

Answer

It is correct if you fix operational semantics and consider the argument to be an algorithm. It falls under “debugging” category. However, since implementations of the same function may run for different amounts of time, it doesn’t make sense in denotational view.

7. What about this?

lub :: (Bool -> ()) -> ()
lub f = [return () if evaluation of f False or f True halts]

Answer

It makes sense in algorithm view, since you can run f False and f True in parallel, interleaving steps. But as it turns out, this is a rare case where a function makes sense in denotational semantics. See lub package.

8. Since a->b in Haskell is seen as function type, not algorithm type, anything dependent of “internals” is ambiguous. How does Haskell deal with it?

Answer

By using the IO monad.

For example, catching exceptions is allowed only in IO, since they can be used to inspect evaluation order. Another example is:

Control.Concurrent.mergeIO :: [a] -> [a] -> IO [a]

You can deem lazy I/O as safe, if you take the ‘algorithm’ view. In the denotational view, lazy IO doesn’t make sense unless you consider IO as nondeterministic.

In my opinion this is not a good approach, and it might be better if Haskell had separate types for computations and values. (A computation can be thought as an algorithm returning a value. For example, 2+2 and 4 are two different computations.)


Summary
In most languages, ‘functions’ are algorithms. In Haskell, the emphasis is on functions as in mathematics and referential transparency.

Since Haskell is running on a computer, operational semantics (algorithms) describe how things work on the lower level and you can’t do away with them. Things like “debugging”, “unsafePerformIO”, “measuring time/space complexity of a function”, “order of evaluation” are relevant to operational semantics and break the abstraction. Things like “referential transparency” or “functional reactive programming” are valid for functions.

I think this is what makes Haskell different from imperative languages. FP is about functions, not algorithms. This has advantages, like better support for composability – and disadvantages, like more difficult time/space reasoning. Continua a leggere

Pubblicato in Senza categoria

The universal space

Take (or imagine) a blank sheet of paper. This is a plane. You can put points and vectors on it. A vector connects two points, but it is “movable”: if you can translate one vector into another, they are deemed equal. A vector doesn’t really have a begi… Continua a leggere

Pubblicato in Senza categoria

Kind polymorphism in action

Ultrecht Haskell Compiler is an experimental Haskell compiler that supports polymorphism on the kind level. This means that in

data Eq a b = Eq (forall f. f a -> f b)

Eq is given kind

Eq :: forall a . a -> a -> *

and both Eq Integer Char and Eq [] Maybe are valid types.

Using kind polymorphism, it is possible to write sigfpe’s From monoids to monads using a single type class.

To talk about monoids, you need a category (mor), multiplication (mul) and a unit.

class Monoid mor mul unit m where
one :: mor unit m
mult :: mor (mul m m) m

With mor being (->), mul being (,), unit being () this is a normal monoid (one :: () -> m and mult :: (m,m) -> m.). For example:

instance Monoid (->) (,) () Integer where
one () = 1
mult = uncurry (*)

Now, instead of functions, there will be natural transformations; instead of (,) there will be functor composition; instead of unit there will be identity functor.

data Nat f g = Nat (forall x. f x -> g x)
data Comp f g x = Comp (f (g x))
data Id x = Id x
Nat :: (* -> *) -> (* -> *) -> *
Comp :: (* -> *) -> (* -> *) -> * -> *
Id :: * -> *

And here is the list monad. Notice kinds are different than in the previous case, but it is still an instance of the same type class.

instance Monoid Nat Comp Id [] where
one = Nat $ \(Id x) -> [x] -- one :: Nat Id []
mult = Nat $ \(Comp x) -> concat x -- mult :: Nat (Comp [] []) []

So, monads are really monoids in category of endofunctors.

If you invert the arrows, you get a comonad. Here’s the product comonad.


data CoNat f g = CoNat (forall x. g x -> f x)
data CoComp f g x = CoComp (g (f x))
CoNat :: (* -> *) -> (* -> *) -> *
CoComp :: (* -> *) -> (* -> *) -> * -> *

data Product w a = Product w a

instance Monoid CoNat CoComp Id (Product w) where
one = CoNat $ \(Product a b) -> Id b
mult = CoNat $ \(Product a b) -> CoComp $ Product a (Product a b)

Question: what are kinds of mor, mul, unit and m in the Monoid type class definition?

There’s a small lie here: monads require also a liftM/fmap function. Not all Haskell types of * -> * are functors, and I used that as a poor replacement.

I didn’t write monoid laws, which if translated happen to be monad laws. You’re welcome to read sigfpe’s original post. It’s hard to write them generically since there’s no access to fmap.

The code is available on hpaste and can be run in UHC. Continua a leggere

Pubblicato in Senza categoria

Denotational semantics

You’re given diagrams of some Haskell types ordered by semantic order. Vertices are inhabitants of a datatype, and the lines point upwards, from less defined to more defined. (See Wikibooks for an introduction and examples.) Your objective is to construct a type corresponding to the diagram, or show that is impossible.

I’ve done the first one – it is obviously Bool. Good luck!

Diagram Type
Bool
Solution
data Three = X | Y | Z
data Four = A | B | C | D
data T = P | Q Three | R Four

Using this method you can define any finite tree.

Solution
data NaturalsUp = S NaturalsUp

Solution
Impossible. There is no bottom element.
Solution
type NaturalsDown = NaturalsUp -> ()

Solution

data Wrap = Wrap k
type T = Wrap (Wrap (Maybe NaturalsUp)

Solution
Integer

Solution
((),())

Solution
data T = L T | R T

Solution
Impossible. The type must form a complete partial order – you could carry the computation indefinitely long, and get the infinite path.
Solution
data T1 = A T2 | B T2
data T2 = C T1 | D T1 | E T1
Solution
data Void

An empty data type has no inhabitants other than bottom. It is used in phantom types.

Solution
data Void
data B k = B k deriving (Show)
data T x = P x | A !(T (B x)) deriving (Show)
type X = T Void

The tree looks like:

The type system is quite expressive – for example, the depths could form only perfect squares.

This is a variant of NaturalsDown and will require cheating a little. Create a module that will export a data type, and only a “smart constructor” that will equate undefined and const undefined.

Solution


module M (Fun, Nat(..), create) where

data Nat = Zero | S Nat
newtype Fun = Fun (Nat -> ())

infinity = S infinity
create :: (Nat -> ()) -> Fun
create f = seq (f infinity) (Fun f)

Outside the module, you cannot create Fun (const undefined).

Application

A great application of denotational semantics is doing numerical integration exactly. Continua a leggere

Pubblicato in Senza categoria

Conjugating verbs in Haskell


> {-# LANGUAGE RecordWildCards #-}
> import Data.Maybe
> import Data.Default
> import Control.Monad.Writer hiding (First)

I’ll show you an English verb conjugator. Although handling inflections is complex, the structure of the language can be expressed idiomatically, using a monad. You’ll see that things like “perfect continuous” are really “perfect” on top of “continuous”, in code.

First, some boring code and auxiliary functions.


> data Tense = Past | Present | Future
> type Infinitive = String
> data Person = First | Second | Third
> -- plural in English is the same form as second person

> pastForms inf = fromMaybe (inf++"ed", inf++"ed") $
> lookup inf [("do", ("did", "done")),
> ("have", ("had", "had")),
> ("be", ("was", "been")),
> ("drive", ("drove", "driven")),
> ("build", ("built", "built"))]

> presentParticiple inf | last inf == 'e' && inf /= "be" = init inf ++ "ing"
> | otherwise = inf ++ "ing"

> pastParticiple inf = snd $ pastForms inf

> conjugate1 :: Tense -> Person -> Infinitive -> String
> conjugate1 Future p inf = "will " ++ inf
> conjugate1 t p "be" = case (t, p) of
> (Present, First) -> "am"
> (Present, Second) -> "are"
> (Present, Third) -> "is"
> (Past, Second) -> "were"
> (Past, _) -> "was"

> conjugate1 Past p inf = fst $ pastForms inf
> conjugate1 Present Third "have" = "has"
> conjugate1 Present Third "do" = "does"
> conjugate1 Present Third inf = inf ++ "s"
> conjugate1 Present _ inf = inf

We can conjugate verbs in three tenses, and form participles. For example:


> test1 = conjugate1 Future First "drive"
> test2 = conjugate1 Present Third "phone"
> test3 = presentParticiple "have"

Adding “perfect”
Now the fun begins.

Exercise: Allow forming perfect tenses:


> conjugate2 :: Bool -> Tense -> Person -> Infinitive -> String

(For example, conjugate2 True Present Third “drive” should be “has driven”)

Solution:

Perfect is “have” + past participle. You can express this directly:


> conjugate2 False tense person inf = conjugate1 tense person inf
> conjugate2 True tense person inf = conjugate1 tense person "have" ++ " " ++ pastParticiple inf

Adding “continuous”
It will be downhill now.

Exercise: Allow forming continuous tenses:


> conjugate3 :: Bool -> Bool -> Tense -> Person -> Infinitive -> String

where the first parameter will be continuous or not. For example, conjugate3 True False Present Third “drive” should be “is driving”.

Solution:

It’s be + present participle.


> conjugate3 False perf tense person inf = conjugate2 perf tense person inf
> conjugate3 True perf tense person inf = conjugate2 perf tense person "be" ++ " " ++ presentParticiple inf

This composes nicely:


> test4 = "he " ++ conjugate3 True True Present Third "drive"

Adding passive voice
Exercise: Allow forming passive voice:


> conjugate4 :: Bool -> Bool -> Bool -> Tense -> Person -> Infinitive -> String

> test5 = "the house " ++ conjugate4 True True False Present Third "build"

Solution:


> conjugate4 False cont perf tense person inf = conjugate3 cont perf tense person inf
> conjugate4 True cont perf tense person inf = conjugate3 cont perf tense person "be" ++ " " ++ pastParticiple inf

Merging
conjugate2, conjugate3 and conjugate4 can be joined into a single function.
Remembering all arguments in order and specifying them every time is problematic. This is described in Brent Yorgey’s Haskell anti-pattern – incremental ad-hoc parameter abstraction. Also there’s a lot of repetition.


> conjugate5 :: Bool -> Bool -> Bool -> Tense -> Person -> Infinitive -> String
> conjugate5 True continuous perfect tense person inf =
> conjugate5 False continuous perfect tense person "be" ++ " " ++ pastParticiple inf
> conjugate5 _ True perfect tense person inf =
> conjugate5 False False perfect tense person "be" ++ " " ++ presentParticiple inf
> conjugate5 _ _ True tense person inf =
> conjugate5 False False False tense person "have" ++ " " ++ pastParticiple inf
> conjugate5 _ _ _ tense person inf = conjugate1 tense person inf

Using records


> data ConjugateOptions = ConjugateOptions { passive :: Bool,
> perfect :: Bool,
> continuous :: Bool,
> person :: Person,
> tense :: Tense }

> instance Default ConjugateOptions where
> def = ConjugateOptions False False False First Present

> conjugate6 :: ConjugateOptions -> Infinitive -> String
> conjugate6 ([email protected]{ .. }) inf
> | passive = conjugate6 o { passive = False } "be" ++ " " ++ pastParticiple inf
> | continuous = conjugate6 o { continuous = False } "be" ++ " " ++ presentParticiple inf
> | perfect = conjugate6 o { perfect = False } "have" ++ " " ++ pastParticiple inf
> | otherwise = conjugate1 tense person inf

Much better – we can use it like


> test6 = conjugate6 def { perfect=True } "paint"

Using the Writer monad
conjugate6 is doing recursion on some infinitive and adds “remaining part” to the end. The Writer monad can express this.


> plumb :: Infinitive -> (Infinitive -> String) -> Infinitive -> Writer [String] Infinitive
> plumb aux participle inf = Writer (aux, [participle inf])

> passive' = plumb "be" pastParticiple
> continuous' = plumb "be" presentParticiple
> perfect' = plumb "have" pastParticiple

> conjugate7 :: Tense -> Person -> (Infinitive -> Writer [String] Infinitive) -> Infinitive -> String

> conjugate7 tense person tr inf =
> let (a,b) = runWriter (tr inf)
> in unwords $ (conjugate1 tense person a):(reverse b)

You can join those different “higher order verbs” using >=>.


> test7 = "he " ++ conjugate7 Past Third (continuous' >=> perfect') "paint"

and add new new ones instantly:


> learn = plumb "learn" ("to "++)

> test8 = "I " ++ conjugate7 Present First (learn >=> perfect') "love" ++ " Haskell"

Obviously there is a lot missing – inflections (“he goes”, “he panicks”), irregular verbs, modal verbs, negation, “used to”, “have something done”, interrogative mood… It gets dirty then.

You can write such conjugator in similar languages, like German.

Haskell is a great language – imagine how would you write conjugate1 without pattern matching, or writing the plumbing in conjugate5 again, when Writer can do that for you. Continua a leggere

Pubblicato in Senza categoria