Google at EMNLP 2018

Posted by Manaal Faruqui, Senior Research Scientist and Emily Pitler, Staff Research Scientist, Google AI Language

This week, the annual conference on Empirical Methods in Natural Language Processing (EMNLP 2018) will be held in Brussels, Belgium. Google will have a strong presence at EMNLP with several of our researchers presenting their research on a diverse set of topics, including language identification, segmentation, semantic parsing and question answering, additionally serving in various levels of organization in the conference. Googlers will also be presenting their papers and participating in the co-located Conference on Computational Natural Language Learning (CoNLL 2018) shared task on multilingual parsing.

In addition to this involvement, we are sharing several new datasets with the academic community that are released with papers published at EMNLP, with the goal of accelerating progress in empirical natural language processing (NLP). These releases are designed to help account for mismatches between the datasets a machine learning model is trained and tested on, and the inputs an NLP system would be asked to handle “in the wild”. All of the datasets we are releasing include realistic, naturally occurring text, and fall into two main categories: 1) challenge sets for well-studied core NLP tasks (part-of-speech tagging, coreference) and 2) datasets to encourage new directions of research on meaning preservation under rephrasings/edits (query well-formedness, split-and-rephrase, atomic edits):

  • Noun-Verb Ambiguity in POS Tagging Dataset: English part-of-speech taggers regularly make egregious errors related to noun-verb ambiguity, despite high accuracies on standard datasets. For example: in “Mark which area you want to distress” several state-of-the-art taggers annotate “Mark” as a noun instead of a verb. We release a new dataset of over 30,000 naturally occurring non-trivial annotated examples of noun-verb ambiguity. Taggers previously indistinguishable from each other have accuracies ranging from 57% to 75% accuracy on this challenge set.
  • Query Wellformedness Dataset: Web search queries are usually “word-salad” style queries with little resemblance to natural language questions (“barack obama height” as opposed to “What is the height of Barack Obama?”). Differentiating a natural language question from a query is of importance to several applications including dialogue. We annotate and release 25,100 queries from the open-source Paralex corpus with ratings on how close they are to well-formed natural language questions.
  • WikiSplit: Split and Rephrase Dataset Extracted from Wikipedia Edits: We extract examples of sentence splits from Wikipedia edits where one sentence gets split into two sentences that together preserve the original meaning of the sentence (E.g. “Street Rod is the first in a series of two games released for the PC and Commodore 64 in 1989.” is split into “Street Rod is the first in a series of two games.” and “It was released for the PC and Commodore 64 in 1989.”) The released corpus contains one million sentence splits with a vocabulary of more than 600,000 words. 
  • WikiAtomicEdits: A Multilingual Corpus of Atomic Wikipedia Edits: Information about how people edit language in Wikipedia can be used to understand the structure of language itself. We pay particular attention to two atomic edits: insertions and deletions that consist of a single contiguous span of text. We extract around 43 million such edits in 8 languages and show that they provide valuable information about entailment and discourse. For example, insertion of “in 1949” adds a prepositional phrase to the sentence “She died there after a long illness” resulting in “She died there in 1949 after a long illness”.

These datasets join the others that Google has recently released, such as Conceptual Captions and GAP Coreference Resolution in addition to our past contributions.

Below is a full list of Google’s involvement and publications being presented at EMNLP and CoNLL (Googlers highlighted in blue). We are particularly happy to announce that the paper “Linguistically-Informed Self-Attention for Semantic Role Labeling” was awarded one of the two Best Long Paper awards. This work was done by our 2017 intern Emma Strubell, Googlers Daniel Andor, David Weiss and Google Faculty Advisor Andrew McCallum. We congratulate these authors, and all other researchers who are presenting their work at the conference.

Area Chairs Include:
Ming-Wei Chang, Marius Pasca, Slav Petrov, Emily Pitler, Meg Mitchell, Taro Watanabe

EMNLP Publications
A Challenge Set and Methods for Noun-Verb Ambiguity
Ali Elkahky, Kellie Webster, Daniel Andor, Emily Pitler

A Fast, Compact, Accurate Model for Language Identification of Codemixed Text
Yuan Zhang, Jason Riesa, Daniel Gillick, Anton Bakalov, Jason Baldridge, David Weiss

AirDialogue: An Environment for Goal-Oriented Dialogue Research
Wei Wei, Quoc Le, Andrew Dai, Jia Li

Content Explorer: Recommending Novel Entities for a Document Writer
Michal Lukasik, Richard Zens

Deep Relevance Ranking using Enhanced Document-Query Interactions
Ryan McDonald, George Brokos, Ion Androutsopoulos

HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, Christopher D. Manning

Identifying Well-formed Natural Language Questions
Manaal Faruqui, Dipanjan Das

Learning To Split and Rephrase From Wikipedia Edit History
Jan A. Botha, Manaal Faruqui, John Alex, Jason Baldridge, Dipanjan Das

Linguistically-Informed Self-Attention for Semantic Role Labeling
Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, Andrew McCallum

Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text
Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, William Cohen

Noise Contrastive Estimation for Conditional Models: Consistency and Statistical Efficiency
Zhuang Ma, Michael Collins

Part-of-Speech Tagging for Code-Switched, Transliterated Texts without Explicit Language Identification
Kelsey Ball, Dan Garrette

Phrase-Indexed Question Answering: A New Challenge for Scalable Document Comprehension
Minjoon Seo, Tom Kwiatkowski, Ankur P. Parikh, Ali Farhadi, Hannaneh Hajishirzi

Policy Shaping and Generalized Update Equations for Semantic Parsing from Denotations
Dipendra Misra, Ming-Wei Chang, Xiaodong He, Wen-tau Yih

Revisiting Character-Based Neural Machine Translation with Capacity and Compression
Colin Cherry, George Foster, Ankur Bapna, Orhan Firat, Wolfgang Macherey

Self-governing neural networks for on-device short text classification
Sujith Ravi, Zornitsa Kozareva

Semi-Supervised Sequence Modeling with Cross-View Training
Kevin Clark, Minh-Thang Luong, Christopher D. Manning, Quoc Le

State-of-the-art Chinese Word Segmentation with Bi-LSTMs
Ji Ma, Kuzman Ganchev, David Weiss

Subgoal Discovery for Hierarchical Dialogue Policy Learning
Da Tang, Xiujun Li, Jianfeng Gao, Chong Wang, Lihong Li, Tony Jebara

SwitchOut: an Efficient Data Augmentation Algorithm for Neural Machine Translation
Xinyi Wang, Hieu Pham, Zihang Dai, Graham Neubig

The Importance of Generation Order in Language Modeling
Nicolas Ford, Daniel Duckworth, Mohammad Norouzi, George Dahl

Training Deeper Neural Machine Translation Models with Transparent Attention
Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao, Yonghui Wu

Understanding Back-Translation at Scale
Sergey Edunov, Myle Ott, Michael Auli, David Grangier

Unsupervised Natural Language Generation with Denoising Autoencoders
Markus Freitag, Scott Roy

WikiAtomicEdits: A Multilingual Corpus of Wikipedia Edits for Modeling Language and Discourse
Manaal Faruqui, Ellie Pavlick, Ian Tenney, Dipanjan Das

WikiConv: A Corpus of the Complete Conversational History of a Large Online Collaborative Community
Yiqing Hua, Cristian Danescu-Niculescu-Mizil, Dario Taraborelli, Nithum Thain, Jeffery Sorensen, Lucas Dixon

SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing
Taku Kudo, John Richardson

Universal Sentence Encoder for English
Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, Ray Kurzweil

CoNLL Shared Task
Multilingual Parsing from Raw Text to Universal Dependencies
Slav Petrov, co-organizer

Universal Dependency Parsing with Multi-Treebank Models
Aaron Smith, Bernd Bohnet, Miryam de Lhoneux, Joakim Nivre, Yan Shao, Sara Stymne
(Winner of the Universal POS Tagging and Morphological Tagging subtasks, using the open-sourced Meta-BiLSTM tagger)

CoNLL Publication
Sentence-Level Fluency Evaluation: References Help, But Can Be Spared!
Katharina Kann, Sascha Rothe, Katja Filippova

Continua a leggere

Pubblicato in Senza categoria

Blitzway Quarter scale 1:4 The Godfather, 1972 – Vito Corleone (Marlon Brando) 21-inch figure


“You can do anything. But never go against the family.” – Don Vito Corleone

‘Godfather’, a movie in which even cruelty feels elegant and refined. The resolute and brutal boss who removes anyone who harms his family members or organization without mercy, ‘The father of the helpless’ who offers help and charity to immigrants and the weak who are victims of prejudice and sacrifice in American society.

Blitzway is very excited to officially present a Superb Scale Statue (1/4 scale) of Vito Corleone (Marlon Brando), the main character in this great movie. For this project, we have conducted many studies and tests on the development of expressions, movements, and body in order to express his great charisma. Also, we have produced realistic figure representations from the movie through perfect suit costumes and accurate balance. In addition, we designed the base by using Godfather’s symbolic chair as motif and expressed the carpet with actual fabric.

The Godfather, 1972 – Vito Corleone. Product size: Approximately H 530mm W 310mm. Specs: 1. Head, Hand: PVC | 2. Body: Skin effect Polystone | 3. Shoes & Accessories: PVC, ABS | 4. Diorama Base: Polystone | 5. Costume: Fabric | 6. Package: Color EPP + Color Box


Scroll down to see the rest of the pictures.
Click on them for bigger and better views.

Release: Dec, 2018


Continua a leggere

Pubblicato in Senza categoria

Introducing AdaNet: Fast and Flexible AutoML with Learning Guarantees

Posted by Charles Weill, Software Engineer, Google AI, NYC

Ensemble learning, the art of combining different machine learning (ML) model predictions, is widely used with neural networks to achieve state-of-the-art performance, benefitting from a rich history and theoretical guarantees to enable success at challenges such as the Netflix Prize and various Kaggle competitions. However, they aren’t used much in practice due to long training times, and the ML model candidate selection requires its own domain expertise. But as computational power and specialized deep learning hardware such as TPUs become more readily available, machine learning models will grow larger and ensembles will become more prominent. Now, imagine a tool that automatically searches over neural architectures, and learns to combine the best ones into a high-quality model.

Today, we’re excited to share AdaNet, a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on our recent reinforcement learning and evolutionary-based AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture, but also for learning to ensemble to obtain even better models.

AdaNet is easy to use, and creates high-quality models, saving ML practitioners the time normally spent selecting optimal neural network architectures, implementing an adaptive algorithm for learning a neural architecture as an ensemble of subnetworks. AdaNet is capable of adding subnetworks of different depths and widths to create a diverse ensemble, and trade off performance improvement with the number of parameters.

AdaNet adaptively growing an ensemble of neural networks. At each iteration, it measures the ensemble loss for each candidate, and selects the best one to move onto the next iteration.

Fast and Easy to Use
AdaNet implements the TensorFlow Estimator interface, which greatly simplifies machine learning programming by encapsulating training, evaluation, prediction and export for serving. It integrates with open-source tools like TensorFlow Hub modules, TensorFlow Model Analysis, and Google Cloud’s Hyperparameter Tuner. Distributed training support significantly reduces training time, and scales linearly with available CPUs and accelerators (e.g. GPUs).

AdaNet’s accuracy (y-axis) per train step (x-axis) on CIFAR-100. The blue line is accuracy on the training set, and red line is performance on the test set. A new subnetwork begins training every million steps, and eventually improves the performance of the ensemble. The grey and green lines are the accuracies of the ensemble before adding the new subnetwork.

Because TensorBoard is one of the best TensorFlow features for visualizing model metrics during training, AdaNet integrates seamlessly with it in order to monitor subnetwork training, ensemble composition, and performance. When AdaNet is done training, it exports a SavedModel that can be deployed with TensorFlow Serving.

Learning Guarantees
Building an ensemble of neural networks has several challenges: What are the best subnetwork architectures to consider? Is it best to reuse the same architectures or encourage diversity? While complex subnetworks with more parameters will tend to perform better on the training set, they may not generalize to unseen data due to their greater complexity. These challenges stem from evaluating model performance. We could evaluate performance on a hold-out set split from the training set, but in doing so would reduce the number of examples one can use for training the neural network.

Instead, AdaNet’s approach (presented in “AdaNet: Adaptive Structural Learning of Artificial Neural Networks” at ICML 2017) is to optimize an objective that balances the trade-offs between the ensemble’s performance on the training set and its ability to generalize to unseen data. The intuition is for the ensemble to include a candidate subnetwork only when it improves the ensemble’s training loss more than it affects its ability to generalize. This guarantees that:

  1. The generalization error of the ensemble is bounded by its training error and complexity.
  2. By optimizing this objective, we are directly minimizing this bound.

A practical benefit of optimizing this objective is that it eliminates the need for a hold-out set for choosing which candidate subnetworks to add to the ensemble. This has the added benefit of enabling the use of more training data for training the subnetworks. To learn more, please walk through our tutorial about the AdaNet objective.

We believe that the key to making a useful AutoML framework for both research and production use is to not only provide sensible defaults, but to also allow users to try their own subnetwork/model definitions. As a result, machine learning researchers, practitioners, and enthusiasts are invited to define their own AdaNet adanet.subnetwork.Builder using high level TensorFlow APIs like tf.layers.

Users who have already integrated a TensorFlow model in their system can easily convert their TensorFlow code into an AdaNet subnetwork, and use the adanet.Estimator to boost model performance while obtaining learning guarantees. AdaNet will explore their defined search space of candidate subnetworks and learn to ensemble the subnetworks. For instance, we took an open-source implementation of a NASNet-A CIFAR architecture, transformed it into a subnetwork, and improved upon CIFAR-10 state-of-the-art results after eight AdaNet iterations. Furthermore, our model achieves this result with fewer parameters:

Performance of a NASNet-A model as presented in Zoph et al., 2018 versus AdaNet learning to combine small NASNet-A subnetworks on CIFAR-10.

Users are also invited to use their own custom loss functions as part of the AdaNet objective via canned or custom tf.contrib.estimator.Heads in order to train regression, classification, and multi-task learning problems.

Users can also fully define the search space of candidate subnetworks to explore by extending the adanet.subnetwork.Generator class. This allows them to grow or reduce their search space based on their available hardware. The search space of subnetworks can be as simple as duplicating the same subnetwork configuration with different random seeds, to training dozens of subnetworks with different hyperparameter combinations, and letting AdaNet choose the one to include in the final ensemble.

If you’re interested in trying AdaNet for yourself, please check out our Github repo, and walk through the tutorial notebooks. We’ve included a few working examples using dense layers and convolutions to get you started. AdaNet is an ongoing research project, and we welcome contributions. We’re excited to see how AdaNet can help the research community.

This project was only possible thanks to the members of the core team including Corinna Cortes, Mehryar Mohri, Xavi Gonzalvo, Charles Weill, Vitaly Kuznetsov, Scott Yak, and Hanna Mazzawi. We also extend a special thanks to our collaborators, residents and interns Gus Kristiansen, Galen Chuang, Ghassen Jerfel, Vladimir Macko, Ben Adlam, Scott Yang and the many others at Google who helped us test it out.

Continua a leggere

Pubblicato in Senza categoria

Mister Toy 1/6th scale The Reporter Outfit & Head Sculpt Set aka Megan Fox as April O’Neil

Teenage Mutant Ninja Turtles is a 2014 American superhero film based on the fictional superhero team of the same name. It is the fifth film in the Teenage Mutant Ninja Turtles film series and also a reboot that features the main characters portrayed by a new cast, as the first in the reboot series. The film was directed by Jonathan Liebesman, written by Josh Appelbaum, André Nemec and Evan Daugherty, and stars Megan Fox, Will Arnett, William Fichtner, Danny Woodburn, Abby Elliott, Noel Fisher, Jeremy Howard, Pete Ploszek and Alan Ritchson, featuring the voices of Johnny Knoxville and Tony Shalhoub. Megan Fox stars as April O’Neil, a reporter for Channel 6 News

Mister Toy 1/6th scale The Reporter Outfit & Head Sculpt Set Features: – Female head sculpt – Vest – Jacket – Satchel – Jeans – Boots – Microphone Note: Ideal for Phicen S12D body or similar (not included).

Scroll down to see all the pictures.
Click on them for bigger and better views.

Related posts:
DREAMEX 1/6th scale Newshen (TMNT April O’Neil – Megan Fox?) 12-inch collectible figure posted on my toy blog HERE
T is for 2012 Teenage Mutant Ninja Turtles Classic Collection Figures by Playmates (pics HERE)
Playmates 6-inch tall Teenage Mutant Ninja Turtles Classic Collection Figures, released 2012 posted HERE
Pictures of Kaiyodo Revoltech Nickelodeon Teenage Mutant Ninja Turtles – All four of them posted HERE

Continua a leggere

Pubblicato in Senza categoria

Acoustic Detection of Humpback Whales Using a Convolutional Neural Network

Posted by Matt Harvey, Software Engineer, Google AI Perception

Over the last several years, Google AI Perception teams have developed techniques for audio event analysis that have been applied on YouTube for non-speech captions, video categorizations, and indexing. Furthermore, we have published the AudioSet evaluation set and open-sourced some model code in order to further spur research in the community. Recently, we’ve become increasingly aware that many conservation organizations were collecting large quantities of acoustic data, and wondered whether it might be possible to apply these same technologies to that data in order to assist wildlife monitoring and conservation.

As part of our AI for Social Good program, and in partnership with the Pacific Islands Fisheries Science Center of the U.S. National Oceanic and Atmospheric Administration (NOAA), we developed algorithms to identify humpback whale calls in 15 years of underwater recordings from a number of locations in the Pacific. The results of this research provide new and important information about humpback whale presence, seasonality, daily calling behavior, and population structure. This is especially important in remote, uninhabited islands, about which scientists have had no information until now. Additionally, because the dataset spans a large period of time, knowing when and where humpback whales are calling will provide information on whether or not the animals have changed their distribution over the years, especially in relation to increasing human ocean activity. That information will be a key ingredient for effective mitigation of anthropogenic impacts on humpback whales.

HARP deployment locations. Green: sites with currently active recorders. Red: previous recording sites.

Passive Acoustic Monitoring and the NOAA HARP Dataset
Passive acoustic monitoring is the process of listening to marine mammals with underwater microphones called hydrophones, which can be used to record signals so that detection, classification, and localization tasks can be done offline. This has some advantages over ship-based visual surveys, including the ability to detect submerged animals, longer detection ranges and longer monitoring periods. Since 2005, NOAA has collected recordings from ocean-bottom hydrophones at 12 sites in the Pacific Island region, a winter breeding and calving destination for certain populations of humpback whales.

The data was recorded on devices called high-frequency acoustic recording packages, or HARPs (Wiggins and Hildebrand, 2007; full text PDF). In total, NOAA provided about 15 years of audio, or 9.2 terabytes after decimation from 200 kHz to 10kHz. (Since most of the sound energy in humpback vocalizations is in the 100Hz-2000Hz range, little is lost in using the lower sample rate.)

From a research perspective, identifying species of interest in such large volumes of data is an important first stage that provides input for higher-level population abundance, behavioral or oceanographic analyses. However, manually marking humpback whale calls, even with the aid of currently available computer-assisted methods, is extremely time-consuming.

Supervised Learning: Optimizing an Image Model for Humpback Detection
We made the common choice of treating audio event detection as an image classification problem, where the image is a spectrogram — a histogram of sound power plotted on time-frequency axes.

Example spectrograms of audio events found in the dataset, with time on the x-axis and frequency on the y-axis. Left: a humpback whale call (in particular, a tonal unit), Center: narrow-band noise from an unknown source, Right: hard disk noise from the HARP

This is a good representation for an image classifier, whose goal is to discriminate, because the different spectra (frequency decompositions) and time variations thereof (which are characteristic of distinct sound types) are represented in the spectrogram as visually dissimilar patterns. For the image model itself, we used ResNet-50, a convolutional neural network architecture typically used for image classification that has shown success at classifying non-speech audio. This is a supervised learning setup, where only manually labeled data could be used for training (0.2% of the entire dataset — in the next section, we describe an approach that makes use of the unlabeled data.)

The process of going from waveform to spectrogram involves choices of parameters and gain-scaling functions. Common default choices (one of which was logarithmic compression) were a good starting point, but some domain-specific tuning was needed to optimize the detection of whale calls. Humpback vocalizations are varied, but sustained, frequency-modulated, tonal units occur frequently in time. You can listen to an example below:

If the frequency didn’t vary at all, a tonal unit would appear in the spectrogram as a horizontal bar. Since the calls are frequency-modulated, we actually see arcs instead of bars, but parts of the arcs are close to horizontal.

A challenge particular to this dataset was narrow-band noise, most often caused by nearby boats and the equipment itself. In a spectrogram it appears as horizontal lines, and early versions of the model would confuse it with humpback calls. This motivated us to try per-channel energy normalization (PCEN), which allows the suppression of stationary, narrow-band noise. This proved to be critical, providing a 24% reduction in error rate of whale call detection.

Spectrograms of the same 5-unit excerpt from humpback whale song beginning at 0:06 in the above recording. Top: PCEN. Bottom: log of squared magnitude. The dark blue horizontal bar along the bottom under log compression has become much lighter relative to the whale call when using PCEN

Aside from PCEN, averaging predictions over a longer period of time led to much better precision. This same effect happens for general audio event detection, but for humpback calls the increase in precision was surprisingly large. A likely explanation is that the vocalizations in our dataset are mainly in the context of whale song, a structured sequence of units than can last over 20 minutes. At the end of one unit in a song, there is a good chance another unit begins within two seconds. The input to the image model covers a short time window, but because the song is so long, model outputs from more distant time windows give extra information useful for making the correct prediction for the current time window.

Overall, evaluating on our test set of 75-second audio clips, the model identifies whether a clip contains humpback calls at over 90% precision and 90% recall. However, one should interpret these results with care; training and test data come from similar equipment and environmental conditions. That said, preliminary checks against some non-NOAA sources look promising.

Unsupervised Learning: Representation for Finding Similar Song Units
A different way to approach the question, “Where are all the humpback sounds in this data?“, is to start with several examples of humpback sound and, for each of these, find more in the dataset that are similar to that example. The definition of similar here can be learned by the same ResNet we used when this was framed as a supervised problem. There, we used the labels to learn a classifier on top of the ResNet output. Here, we encourage a pair of ResNet output vectors to be close in Euclidean distance when the corresponding audio examples are close in time. With that distance function, we can retrieve many more examples of audio similar to a given one. In the future, this may be useful input for a classifier that distinguishes different humpback unit types from each other.

To learn the distance function, we used a method described in “Unsupervised Learning of Semantic Audio Representations“, based on the idea that closeness in time is related to closeness in meaning. It randomly samples triplets, where each triplet is defined to consist of an anchor, a positive, and a negative. The positive and the anchor are sampled so that they start around the same time. An example of a triplet in our application would be a humpback unit (anchor), a probable repeat of the same unit by the same whale (positive) and background noise from some other month (negative). Passing the 3 samples through the ResNet (with tied weights) represents them as 3 vectors. Minimizing a loss that forces the anchor-negative distance to exceed the anchor-positive distance by a margin learns a distance function faithful to semantic similarity.

Principal component analysis (PCA) on a sample of labeled points lets us visualize the results. Separation between humpback and non-humpback is apparent. Explore for yourself using the TensorFlow Embedding Projector. Try changing Color by to each of class_label and site. Also, try changing PCA to t-SNE in the projector for a visualization that prioritizes preserving relative distances rather than sample variance.

A sample of 5000 data points in the unsupervised representation. (Orange: humpback. Blue: not humpback.)

Given individual “query” units, we retrieved the nearest neighbors in the entire corpus using Euclidean distance between embedding vectors. In some cases we found hundreds more instances of the same unit with good precision.

Manually chosen query units (boxed) and nearest neighbors using the unsupervised representation.

We intend to use these in the future to build a training set for a classifier that discriminates between song units. We could also use them to expand the training set used for learning a humpback detector.

Predictions from the Supervised Classifier on the Entire Dataset
We plotted summaries of the model output grouped by time and location. Not all sites had deployments in all years. Duty cycling (example: 5 minutes on, 15 minutes off) allows longer deployments on limited battery power, but the schedule can vary. To deal with these sources of variability, we consider the proportion of sampled time in which humpback calling was detected to the total time recorded in a month:

Time density of presence on year / month axes for the Kona and Saipan sites.

The apparent seasonal variation is consistent with a known pattern in which humpback populations spend summers feeding near Alaska and then migrate to the vicinity of the Hawaiian Islands to breed and give birth. This is a nice sanity check for the model.

We hope the predictions for the full dataset will equip experts at NOAA to reach deeper insights into the status of these populations and into the degree of any anthropogenic impacts on them. We also hope this is just one of the first few in a series of successes as Google works to accelerate the application of machine learning to the world’s biggest humanitarian and environmental challenges. To find out how this project was started, read the NOAA Fisheries blog post by Research Oceanographer Ann Allen.

We would like to thank Ann Allen (NOAA Fisheries) for providing the bulk of the ground truth data, for many useful rounds of feedback, and for some of the words in this post. Karlina Merkens (NOAA affiliate) provided further useful guidance. We also thank the NOAA Pacific Islands Fisheries Science Center as a whole for collecting and sharing the acoustic data.

Within Google, Jiayang Liu, Julie Cattiau, Aren Jansen, Rif A. Saurous, and Lauren Harrell contributed to this work. Special thanks go to Lauren, who designed the plots in the analysis section and implemented them using ggplot.

Continua a leggere

Pubblicato in Senza categoria

Mini Times Toys 1/6th scale SEAL Team Navy Special Forces HALO Night Ops with Dog

SEAL Team is an American military drama television series created by Benjamin Cavell. The series is produced by CBS Television Studios, and began airing on CBS on September 27, 2017. The series follows an elite unit of United States Navy SEALs Bravo Team, a sub-unit of the United States Naval Special Warfare Development Group, portrayed by David Boreanaz, Max Thieriot, Jessica Paré, Neil Brown Jr., A. J. Buckley and Toni Trucks.

David Boreanaz plays Master Chief Special Warfare Operator Jason Hayes, leader of a Navy SEAL team (Bravo Team) dealing with the recent loss of one of their own. In the series pilot, Jason is referred to as a Senior Chief, but in “Collapse”, he calls himself an “E-9″ Master Chief.

Mini Times Toys 1/6th scale SEAL Team Navy Special Forces HALO Night Ops with Dog FEATURES: Head Sculpt, Articulated body, Mechanix M-Pact, Strike Glasses, HK416 Rifle, EOTECH EXPS2 Sight, LA5 PEQ LASER, Tango Grip, Scout Light with Low Profile Mount, MK17 Suppressor (Black), P226 Pistol, HK416 Magazine x4, Pistol Magazine Pouch x2, First-SPEAR STT vest, FAST MAG MULTICAM x3, Sundries bag, PRC 148 Radio Pouch (MultiCam), P226 FAST MAG MULTICAM, Peltor COMTEC II Headset, P226 Holster (MultiCam), Grenade x2, Tactical Knife, Rifle Sling x2 (MultiCam), G3 Shirt (MultiCam), G3 Pants (MultiCam), Tactical Boots, FAST Maritime Helmet (AOR1), GPNVG-18 Ground Panoramic Night Vision Goggles, LHT MOLLE Hydration Pouch (MultiCam), Tri-Fold Restraint Plasticuffs x2 (Yellow) x2, Glow stick x3, Hel-Star 6, Flashbang x2, Altimeter, Oxygen Tank, Oxygen tank pouch, GENTEX MBU-20/P Oxygen Mask

Scroll down to see all the pictures.
Click on them for bigger and better views.

Continua a leggere

Pubblicato in Senza categoria